Program: Diploma in Electrical and Electronics Engineering		
Course Code: 4037	Course Title: Induction Machines lab	
Semester: 4 Credits: 1.5		
Course Category: Program Core		
Periods per week: 3 (L: 0 T: 0 P:3)	Periods per semester: 45	

Course Objectives:

- To know the parts, nameplate data, polarity and connections oftransformers and induction motors.
- To recognize the performance characteristics of transformer and induction motors,

Course Prerequisites:

Topic	Course Code	Course name	Semester
Basics of electric circuits		Fundamentals of Electric Circuits	3
Basics of measurements		Electrical and Electronics Measurements & Instrumentation	3
Knowledge of measurements		Electrical and Electronics Measurements Lab	3
Knowledge in Electrical machines		DC Machines & Traction Motors	3

Course Outcomes:

On completion of the course, the students will be able to:-

COn	Description	Duration (Hours)	Cognitive Level
CO1	Identify the parts, collect nameplate data, polarity and connections of transformers.	9	Applying
CO2	Identify the losses and develop the performance characteristics of transformers.	12	Applying

CO3	Identify the nameplate data, parts, polarity, different connections and classification of three phase induction motors.	6	Applying
CO4	Develop the performance characteristics of three phase squirrel cage and slip-ring inductions motors, and calculate the losses.	12	Applying
	Lab Exam	6	

CO-PO Mapping

Corse Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1				2			
CO2				3			
CO3				3			
CO4				3			

³⁻Strongly mapped, 2-Moderately mapped, 1-Weakly mapped

Course Outline

Module Outcome	Name of Experiment	Duration (Hours)	Cognitive Level
CO1	Identify the parts, collect nameplate data, polarity and connections of transformers.		
	i. Identify and Collect the nameplate details of transformers		
M1.01	ii. Identify the parts of single phase and three phase transformers	6	Applying
	iii. Organize polarity test on Single phase transformer.		
M1.02	Construct a three phase transformer using three single phase transformers	3	Applying

CO2	Identify the losses and develop the performant transformers.	ice characte	ristics of	
M2.01	Apply direct loading technique on a transformer to Determine efficiency and regulation at given power factor. 3 Applying			
M2.02	Experiment with transformers to Predetermine efficiency and regulation at various power factors and plot output v/s efficiency and PF v/s regulation.	3	Applying	
M2.03	Develop a circuit to conduct OC and SC tests on a single phase transformer to determine values of equivalent circuit parameters and to draw equivalent circuits referred to primary/secondary. Applying			
	Series test - I	3		
CO3	Identify the nameplate data, parts, polarity, d classification of three phase induction motors		nections and	
M3.01	i. Identify and Collect nameplate data of induction motors.ii. Identify the parts of induction motors.iii. Organize stator resistance test on three phase induction motors.	3	Applying	
M3.02	 i. Organize polarity test on three phase squirrel cage/ slip-ring induction motor. ii. Develop a star - delta starter for the three phase induction motor. 		Applying	
CO4	Develop the performance characteristics of the slip-ring inductions motors and calculate the	-	quirrel cage and	
M4.01	Construct a circuit for conducting no load test on a three phase induction motor and separate no load losses.	3	Applying	
M4.02	Construct a circuit to conduct load test on a three phase induction motor and to plot performance characteristics.	3	Applying	
M4.03	Construct a circuit to conduct no load and blocked rotor tests on a three phase induction motor, determine values of equivalent circuit parameters & draw the equivalent circuit.	3	Applying	
M4.04	Construct a circuit for no load and blocked rotor tests on a three phase induction motor and draw the circle diagram.	3	Applying	
	Series test - II	3		

Text / Reference

T/R	Book Title/Author
T1	BL Theraja. Electrical technology. Vol- II: S Chand & co.
R1	JB Gupta. Theory and performance of electrical Machines: S. K. Kataria & Sons
R2	SK Sahdev. Electrical Machines. Cambridge university press

Online Resources

Sl.No	Website Link
1	Virtual Lab
	http://vlabs.iitb.ac.in/vlab/labsee.html
2	http://em-coep.vlabs.ac.in/List%20of%20experiments.html?domain=Electrical%20Engine ering
3	http://vem-iitg.vlabs.ac.in/
4	https://www.ee.iitb.ac.in/course/~emlab/lab-manual.html
5	https://www.pscmr.ac.in/eee_labmanuals/2-2_ELECTRICAL%20MACHINES-I%20LAB.pdf
6	http://vvitengineering.com/lab/EE6411-ELECTRICAL-MACHINES- LABORATORY-I.pdf