Program: Diploma in Electrical & Electronics Engineering		
Course Code: 3036 Course Title: DC Machines Lab		
Semester: 3 Credits: 1.5		
Course Category: Program Core		
Periods per week: 3 (L:0 T:0 P:3)	Periods per semester: 45	

Course Objectives:

- To practice hands-on experience with DC machines and able to test machine performances
- To know the faults of a dc machine at breakdown condition.
- To analyze speed control techniques of dc motors and to develop performance characteristics.

Course Prerequisites:

Topic	Course code	Course name	Semester
Basic Knowledge of setting up a connection as per diagram.		Fundamentals of Electrical & Electronics Engineering Lab	٠,

Course Outcomes:

COn	Description	Duration (Hours)	Cognitive level
1 (())	Identify the construction of DC machines and develop magnetic curves.	9	Applying
\perp CO2	Develop the performance characteristics of various types of DC generators.	12	Applying
CO3	Apply various speed control techniques in dc motors to plot the speed curve and testing of dc machines.	9	Applying
- COA	Develop the performance characteristics of various types of DC motors.	9	Applying
	Lab Exam	6	

CO-PO Mapping

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3			3			
CO2				3			
CO3				3			
CO4				3			

3-Strongly mapped, 2-Moderately mapped, 1-Weakly mapped

Course Outline

Module Outcome	Description	Duration (Hours)	Cognitive Level		
CO1	Identify the construction of DC machines and develop magnetic curves.				
M1.01	Dismantle and reassemble a DC machine and identify parts.	3	Applying		
M1.02	Dismantle and reassemble various types of starters and identify parts.	3	Applying		
M1.03	Run a separately excited and self-excited DC generator at rated conditions and plot OCC, and identify critical speed and resistance. Deduce the same for different speeds.	3	Applying		
CO2	Develop the performance characteristics of various types of DC generators				
M2.01	Plot the efficiency curve of self and separately excited dc generators at rated condition	3	Applying		
M2.02	Develop the internal and external characteristics of dc shunt generator at constant speed	3	Applying		
M2.03	Plot efficiency curves of dc series generator at different loads.	3	Applying		
M2.04	Plot the efficiency curves of DC compound generator at different loads in (i) Long shunt configuration (ii) short shunt configuration	3	Applying		
	Lab Exam 1	3			

CO3	Apply various speed control techniques in dc motors and testing of dc machines.	to plot the	e speed curve	
M3.01	Choose the field control method to control the speed of the DC shunt motor and plot the field current v/s speed curve.	3	Applying	
M3.02	Choose armature control method to control the speed of the DC shunt motor and plot the field current v/s speed curve.	3	Applying	
M3.03	Apply Swinburne's test on a DC shunt machine to predetermine its efficiency (when working as a motor and generator).	3	Applying	
CO4	Develop the performance characteristics of various types of DC motors.			
M4.01	Apply direct loading technique on a DC shunt motor to plot performance curves (torque vs speed, output vs efficiency, speed and input current)	3	Applying	
M4.02	Plot the performance characteristics (torque vs speed, output vs efficiency, speed and input current) of a dc series motor by conducting direct load test	3	Applying	
M4.03	Apply direct loading test on a DC compound motor and plot performance curves (torque vs speed, output vs efficiency, speed and input current).	3	Applying	
	Lab Exam II	3		

Text /Reference:

T/R	Book Title/Author
T1	Laboratory manual for Electrical Machines. D P Kothari, B.S. Umre. Wiley ISBN: 9789389583410
T2	Laboratory Manuel on Electrical Measurements & Electrical Machines, P.O.Kuttappan, Spades publishers
Т3	Electrical Technology Volume II by A K Theraja, B L Theraja, S Chand & Co.
R1	JB Gupta. Theory and Performance of Electrical Machines: S. K. Kataria& Sons
R2	K Murugesh Kumar, Dc Machines and Transformers: S Chand & Company

Online Resources:

Sl.No	Website Link
1	https://www.ee.iitb.ac.in/course/~emlab/lab-manual.html
2	Virtual labs: http://vlabs.iitb.ac.in/vlab/labsee.html
3	http://em-coep.vlabs.ac.in
4	http://vem-iitg.vlabs.ac.in
5	www.swayam.gov.in
6	www.nptel.ac.in
7	www,electrical4u.com
8	www.youtube.com